
Process and Data Science Group

RWTH Aachen University

OCEL Standard

Authors:
Anahita Farhang Ghahfarokhi
Gyunam Park
Alessandro Berti
Wil van der Aalst

January 8th, 2020

OCEL Standard

Contents

1 Introduction 2

2 Object-centric Event Log: Conceptualization 3

3 Object-centric Event Log: Formal Definitions 5

4 Specification 7
4.1 Meta-model for the specification of OCEL 8
4.2 Detailed Specification . 10

5 Serialization of OCEL 14
5.1 XML Serialization of OCEL . 15
5.2 JSON Serialization of OCEL . 18

6 Available Event Logs 20

7 Library Support 21

8 Appedix A - Validation 22
8.1 Verification of XML-OCEL . 22
8.2 Verification of JSON-OCEL . 25

1

OCEL Standard

1 Introduction

Event logs are the starting point to apply process mining techniques. Classic event logs
consist of events that are characterized by a case identifier, referring to a unique process
instance (e.g., patient, manufacturing product, etc.), an activity, a timestamp at which
the event occurred, and some additional attributes such as blood pressure, weight, etc.
The XES standard1 is an XML-based standard for such traditional event logs. The XES
standard describes event logs where a single case notion (i.e., process instance) need to
be chosen.

However, in reality, we face information systems such as SAP ERP systems that support
processes that cannot be reduced to a single case notion. In these processes various
objects interact and one event may involve a mixture of objects, e.g., orders, items, and
packages. Therefore, a unifying case notion is missing. Selecting one of the object types
as a case notion provides a specific view on the process and may lead to convergence
and divergence problems. Moreover, the resulting process models will be inherently
incomplete. Fortunately, we can also extract object-centric event logs (i.e., event logs
with multiple case notions) from such systems. Such logs are positioned in-between
the data in the system and “flat” logging formats such as XES. The purpose of this
document is to provide a general standard for Object-Centric Event Logs (OCELs).

A few logging formats have been proposed to tackle the problem. These formats are not
widely adopted because of their complexity and performance problems (e.g., XOC allows
reconstructing the entire database state). An informal way to represent OCELs is in terms
of two tables. One table represents the event records, where each row corresponds to a
distinct event, as shown in Table 1. The other table represents the relevant information
of objects in the information systems, as described in Table 2.

The purpose of the OCEL standard is to provide a general standard to interchange event
data with multiple case notions. The goal is to exchange data between information
systems and process mining analysis tools. When developing the OCEL standard, we
started from the following goals:

• Interoperability: with the provision of the OCEL standard and JSON/XML seri-
alizations of OCEL, we want to support a widespread collection of languages and
systems.

• Generalization: the standard supports the storage of events, objects, and their
attributes. Furthermore, the standard can be extended.

• Provision of a collection of examples: example logs, extracted from information
systems supporting some widespread business processes, are provided for the OCEL

1https://xes-standard.org

2

OCEL Standard

standard.

• Tool/Library Support: to support the implementation of OCEL in custom appli-
cations, tool/library support shall be provided.

Table 1: Informal representation of the events of an OCEL. Each row (except the header)
represents an event.

id activity timestamp item order package prepaid-amount weight total-weight

e1 place order 2020-07-09 08:20:01.527+01:00 { i1, i2 } { o1 } 200.0
e2 check availability 2020-07-09 08:21:01.527+01:00 { i1 } 10.0
e3 load package 2020-07-09 08:22:01.527+01:00 { p1 } 100.0

Table 2: Informal representation of the objects of an OCEL. Each row (except the header)
represents an object.

id type customer costs color size

o1 order Apple 3500.0
i2 item green small

The rest of the document is organized as follows: Section 2 proposes a conceptualization
of OCELs. Section 3 defines formally OCELs. Section 4 introduces the specification of
the format. Section 5 describes two serializations using JSON and XML, resulting in
concrete representations that can be exchanged between systems. Section 6 provides
some realistic logs expressed in the JSON and XML formats. Section 7 provides library
support for OCEL. Appendix A in Section 8 contains the schema of both JSON-OCEL
and XML-OCEL.

2 Object-centric Event Log: Conceptualization

In this section, we provide a conceptualization of Object-Centric Event Logs (OCEL).
Figure 1 shows the class diagram for this conceptualization. An object-centric event log
contains events and objects related to a business process, such as Order-to-Cash (O2C)
and Purchase-to-Pay (P2P) processes in ERP systems.

Each event represents an execution record of an underlying business process. An event is
associated with an identifier, an activity, and a timestamp. The activity and timestamp
represent what happens in the execution and when it happens, respectively. In the first
row of Table 1, the event, having identifier of e1, is associated with the execution of
place order at 2020-07-09 08:20:01.527+01:00. Also, the execution of an event involves
a set of related objects. In this event, three objects (o1, i1, and i2) are involved in its
execution. An event may involve several event attributes. Each event attribute has an
attribute name and attribute value. Attribute names and attribute values are related

3

OCEL Standard

Figure 1: The UML class diagram for conceptualizing the OCEL.

to attribute types. For example, e1 has an attribute prepaid-amount (attribute name),
and its value is 200.0 (of type float). The attribute name and attribute value that are
contained in an attribute related to single event, have the same type.

Objects represent physical and informational entities composing business processes such
as materials, documents, products, invoices, etc. Each object has an identifier and is
associated with an object type. In the second row of Table 2, the object with identifier
i1 is an item (i.e., object type). Moreover, objects may contain multiple attributes. Each
attribute has its own name and value that are associated with a type. For example, i2
has the green color and small size.

As shown in Figure 1, there exist many-to-many relationships between objects and events.
Multiple objects can be involved in an event (e.g., o1, i1, and i2 are involved in e1 in
Table 1), and an object can be involved in many events (e.g., i1 is involved in e1 and e2
in Table 1).

The numbers in the squares of Figure 1 indicate the functions that associate the sources’

4

OCEL Standard

values to the targets (e.g., activity values to events). In the following section, we will
provide the formal definition of OCELs based on the conceptualization.

3 Object-centric Event Log: Formal Definitions

This section presents the definition of an OCEL. First, we define the universes that are
used in the definitions.

Definition 1 (Universes). Below are the universes used in the formal definition of OCEL:

• Ue is the universe of event identifiers.
Example: Ue = {e1, e2, e3, . . .}

• Uact is the universe of activities.
Example: Uact = { place order, check availability, . . . }

• Uatt is the universe of attribute names.
Example: Uatt = { resource, weight, . . . }

• Uval is the universe of attribute values.
Example: Uval = { 500, 1000, Mike, . . . }

• Utyp is the universe of attribute types.
Example: Utyp = { string, integer, float, . . . }

• Uo is the universe of object identifiers.
Example: Uo = {o1, i1, . . .}

• Uot is the universe of objects types.
Example: Uot = { order, item, . . . }

• Utimest is the universe of timestamps.
Example: Utimest = { 2020-07-09T08:21:01.527+01:00, . . . }

Using the universes, we define OCELs.

Definition 2 (Object-Centric Event Log). An object-centric event log is a tuple
L = (E,AN,AV,AT,OT,O, πtyp, πact, πtime, πvmap, πomap, πotyp, πovmap,≤) such that:

• E ⊆ Ue is the set of event identifiers. E is a subset of Ue. As shown in Figure 1,
each event is related to an event identifier.
Example: the first event shown in Table 1 is related to the event identifier e1.

• AN ⊆ Uatt is the set of attributes names. AN is a subset of Uatt. As shown
in Figure 1, an event or object can have zero to many attributes. An attribute
contains a name.

5

OCEL Standard

Example: in Table 1 resource, prepaid-amount, weight, and total-weight are
attribute names and, in Table 2, costs, color, and size are attribute names.

• AV ⊆ Uval is the set of attribute values (with the requirement that AN∩AV = ∅).
AV is a subset of Uval. As shown in Figure 1, an event or object can have zero to
many attributes. An attribute contains a value.
Example: in Table 1 200.0, Anahita, and 10.0 are attribute values, and in Table 2,
Apple, green, and 3500.0 are examples of attribute values.

• AT ⊆ Utyp is the set of attribute types. AT is a subset of Utyp. Therefore, each
member of AT can be a type for the attributes that are related to either an event
or an object.
Example: the type of attribute resource is Table 1 is string.

• OT ⊆ Uot is the set of object types. OT is a subset of Uot. Each object is related
to an object type, as shown in Figure 1.
Example: in Table 2, for the first object, the type is order.

• O ⊆ Uo is the set of object identifiers. O is a subset of Uo. Each object is related
to an object identifier, as shown in Figure 1.
Example: the first object in Table 2 is related to the object identifier o1.

• πtyp : AN ∪ AV → AT is the function associating an attribute name or value
to its corresponding type (also see Relation 1 in Figure 1). Each attribute name
and attribute value in the event log is associated with a type. For each event and
object, we need to check the consistency between the type of the attribute name
and the attribute value associated with that. We will check this consistency in the
following definitions.

Example: for the attributes in Table 1, πtyp(prepaid-amount) = float, πtyp(200.0) =
float.

• πact : E → Uact is the function associating an event (identifier) to its activity (also
see Relation 2 in Figure 1). Each event in the event log is associated with an
activity.
Example: for the first event shown in Table 1, the activity is place order.

• πtime : E → Utimest is the function associating an event (identifier) to a timestamp
(also see Relation 3 in Figure 1). Each event in the event log is associated with a
timestamp.
Example: for the first event shown in Table 1, the timestamp is
2020-07-09T08:21:01.527+01:00.

• πvmap : E → (AN 6→ AV) such that

πtyp(n) = πtyp(πvmap(e)(n)) ∀e ∈ E ∀n ∈ dom(πvmap(e))

6

OCEL Standard

is the function associating an event (identifier) to its attribute value assignments
(also see Relation 4 in Figure 1). As shown in Figure 1, an event is related to
attributes that contain an attribute name and attribute value. As discussed in
πtyp, each attribute name and attribute value have a type. They should have the
same type for one event. Therefore, we check whether the type of the attribute
name and the attribute value associated with that match with each other.

Example: for the first event in Table 1, πvmap(e1)(prepaid-amount) = 200.0

• πomap : E → P(O) is the function associating an event (identifier) to a set of
related object identifiers (also see Relation 5 in Figure 1). As shown in Figure 1
and through Relation 5, an event can contain many objects.
Example: the first event in Table 1 is related to three objects πomap(e1) =
{o1, i1, i2}.

• πotyp ∈ O → OT assigns precisely one object type to each object identifier (also
see Relation 6 in Figure 1).
Example: for the first object in Table 2, πotyp(o1) = order.

• πovmap : O → (AN 6→ AV) such that

πtyp(n) = πtyp(πovmap(o)(n)) ∀n ∈ dom(πovmap(o)) ∀o ∈ O

is the function associating an object to its attribute value assignments (also see
Relation 7 in Figure 1). As shown in Figure 1, an object is related to attributes
that contain an attribute name and attribute value. As discussed in πtyp, each
attribute name and attribute value have a type. They should have the same type
for one object. Therefore, we check whether the type of the attribute name and
the attribute value associated with that match with each other.
Example: for the second object in Table 2, πovmap(i2)(color) = green.

• ≤ is a total order (i.e., it respects the antisymmetry, transitivity, and connexity
properties). A possible way to define a total order is to consider the timestamps
associated with the events as a pre-order (i.e., assuming some arbitrary, but fixed,
order for events having the same timestamp).

4 Specification

This section introduces the specification to implement the OCEL based on the formal
definition. To this end, we first introduce the meta-model for the specification of the
OCEL. Afterward, we illustrate the specification in more detail by connecting the meta-
model to the formal definition.

7

OCEL Standard

For the presentation of the specification, we take the minimal OCEL informally described
in Tables 1 and 2.

4.1 Meta-model for the specification of OCEL

The meta-model for the specification of OCEL is shown in Figure 2 as a UML 2.0
class diagram. The meta-model defines three classes, i.e., log, event, and object. The
description for each class is as follows:

• Log: The log class contains an arbitrary number of events and objects as described
in Section 2. A log may also contain global elements such as global log element,
global event element, and global object element. These log elements will be
specified in Section 4.2.

• Event: Each event represents an execution record of an underlying business pro-
cess. As explained in Section 2, an event contains required elements (e.g., id,
activity, timestamp, and relevant objects) and possibly also optional elements
(e.g., event attributes). In Section 4.2, it will be specified how these elements
are implemented based on the meta-model.

• Object: Each object indicates the information of an object instance in the business
process. As introduced in Section 2, an object contains required (e.g., type) and
optional (e.g., color and size) elements. In Section 4.2, it will be specified how
these elements are implemented based on the meta-model.

The log, event, and object classes only define the structure of logs. The actual informa-
tion of the classes are realized with the element class.

• Element: An element is composed of a key and value(s). The key is string-based,
whereas the value may be string, timestamp, integer, float, and boolean. Below is
the description for each value type:

– String elements hold literal information which is generally untyped and of
arbitrary length., e.g., prepaid-amount.

– Timestamp elements hold information about a specific point in time (with
milliseconds precision). The timestamp format is according to the xs:dateTime
data type2, e.g., 2020-07-09T08:21:01.527+01:00.

– Integer elements have a numeric value (a discrete integer number), e.g., 2.

– Float elements have a float value (a floating-point number), e.g., 23.4.

– Boolean elements are elements that can only be true or false, e.g., True.

2See https://www.w3schools.com/xml/schema_dtypes_date.asp

8

OCEL Standard

Figure 2: The UML class diagram for the complete meta-model for the OCEL standard
showing the classes and their relations.

9

OCEL Standard

An element can be nested, i.e., a parent element can contain child elements.
Among nested elements, we have two important categories:

– We define a list as a nested element where the child elements’ keys are the
same and their values have the same data type. For instance,

ocel:attribute-names: [name:color, name:costs, name:weight]

is a list. For the remainder of this document, we denote the list by discarding
the child elements’ keys, e.g., ocel:attribute-names: [color, costs, weight].

– We define a map as a nested element whose child elements have different
keys. For instance,

ocel:ovmap: { color : green, size: small }

is a map since the keys (i.e., color and size) are different.

The conceptualization model in Figure 1 is related to the meta-model in Figure 2. The
log, event, and object entities in Figure 1 can be mapped to the log, event, and object
entities in Figure 2. The values that are associated with the event (e.g., event identifier,
activity and timestamp in Figure 1) are realized with the elements (at the event level)
in Figure 2. Also, the values related to the object (e.g., object identifier and type in
Figure 1) are realized with the elements in Figure 2.

4.2 Detailed Specification

This section explains how the classes in the meta model are implemented with the
elements. As described in Figure 2, an OCEL is composed of global log, global event,
global-object, event, and object classes. The actual information in each class is realized
with the elements. For each class, we define required and optional elements. Figure 3
shows an overview of the element formation. For instance, a global log class contains
elements such as version, attribute names, and object types. In the following, we explain
each element with a short description, a key, an expected value type, and an example.
Moreover, we clarify the connection to the formal definition in Section 3, as shown in
Figure 3. As design choices, we do not implement the set of attribute values (i.e., AV),
the set of attribute types (i.e., AT), and the function that associates an attribute to its
type (i.e., πtyp) in the current version of the standard. The reasoning is as follows:

1. AV is infinite by nature, making the following serialization unwieldy.

2. AT and πtyp are implicitly available in the contemporary implementation options,
making the serialization redundant.

10

OCEL Standard

Figure 3: The detailed elements of OCEL and their connection to the formal definition.

Furthermore, the specification involves implementation-specific information such as ver-
sion name and default values for missing event and object information.

First, an OCEL contains a global log, global event, and global object element.

• global-log: specifies the version, attribute names, and object types that compose
the log.

– key: ocel:global-log

– value: map with its child elements having list value type.

– required: yes

– example:
ocel:global-log :
ocel:version: 0.1,
ocel:attribute-names: [cost, color, size],
ocel:object-types: [customer, order, item]

– version: the version of the OCEL standard followed by the log.

∗ key: ocel:version

∗ value: string

∗ required: yes

11

OCEL Standard

∗ example: ocel:version: 0.1

– attribute-names: a list of attribute names that are used in event or object
elements. It is linked to AN in the definition.

∗ key: ocel:attribute-names

∗ value: list of strings

∗ required: yes

∗ example: ocel:attribute-names: [color, costs, weight]

– object-types: a list of object types that are used in the log. It is linked to
OT in the definition, and each object is mapped onto its type through πotyp.

∗ key: ocel:object-types

∗ value: list of strings

∗ example: ocel:object-types: [customer, item, order]

• global-event: specifies some default values for the elements when they are not
specified by the event’s attribute map; hence, these elements are specified for all
the events.

– key: ocel:global-event

– value: map with its child elements having a string value type.

– required: yes

– example: ocel:global-event: {id : invalid, activity : invalid, timestamp: in-
valid}

The above example define that every event in the log has valid elements with key
id, activity, and timestamp. When the values are missing for the elements, the
default values (i.e., invalid) fill these missing values.

• global-object: specifies some default values for the elements when they are not
specified by the object’s attribute map; hence, these elements are specified for all
the objects.

– key: ocel:global-object

– value: map with its child elements having a string value type.

– required: yes

– example: ocel:global-object: {id : invalid, type: invalid}

12

OCEL Standard

The above example defines that every object in the log has valid elements with
keys id and type. Missing values are replaced with invalid.

• Event: an event contains the id, activity, timestamp, omap, and vmap elements.

– id: each event should have an identifier that is a string. It is linked to E in
the definition, and each event is related to an event identifier in E.

∗ key: ocel:id

∗ value: string

∗ required: yes

∗ example: ocel:id : e1

– activity: each event should have an activity that shows the name of the task
executed. In the definition, each event is related to an activity through πact.

∗ key: ocel:activity

∗ value: string

∗ required: yes

∗ example: ocel:activity : place order

– timestamp: each event should have a timestamp that shows the point of
time at which the event occurred. In the definition, each event is related to
a timestamp through πtime.

∗ key: ocel:timestamp

∗ value: date

∗ required: yes

∗ example: ocel:timestamp: 2020-07-09T08:20:01.527+01:00

– omap: each event can have an omap that shows the list of objects involved
in that event. In the definition, the πomap function associates each event to
a set of related objects.

∗ key: ocel:omap

∗ value: list of strings

∗ required: yes

∗ example: ocel:omap: [o1, i1, i2]

13

OCEL Standard

– vmap: each event can have a vmap that is a nested element. In the definition,
each event is mapped to its attribute value mapping using the πvmap function.

∗ key: ocel:vmap

∗ value: map with its child elements having a string value type.

∗ required: no

∗ example: ocel:vmap: { resource : Alessandro, prepaid-amount: 200.0}

• Object: an object contains the id, type, ovmap elements.

– id: each object should have an id that is a string. It is linked to O in the
definition, and each object is related to an object identifier in O.

∗ key: ocel:id

∗ value: string

∗ required: yes

∗ example: ocel:id : o1

– type: each object should have a type that is a string. It is linked to πotyp in
definition, that associates a type to the object.

∗ key: ocel:type

∗ value: string

∗ required: yes

∗ example: ocel:type: order

– ovmap: each object can have an ovmap that is a nested element. Using the
πovmap function, each object is mapped onto its attribute value mapping.

∗ key: ocel:ovmap

∗ value: map with its child elements having a string value type.

∗ required: no

∗ example: ocel:ovmap: { color : green, size : small }

5 Serialization of OCEL

In this section, we propose two implementations of the OCEL standard and provide the
corresponding serialization (JSON/XML). To illustrate the two serializations, we take

14

OCEL Standard

as example the event log informally described in Tables 1 and 2. While the example is
(deliberately) minimal, it is large enough to introduce the two serializations.

5.1 XML Serialization of OCEL

The XML serialization of OCEL (XML-OCEL) follows the specification proposed in Fig-
ure 2. An example is provided in Listing 1. The example shows the serialization of the
event log informally described in Tables 1 and 2.

The element with the log tag contains four mandatory elements as follows:

• The global with scope=’log’ provides access to three properties:

– The log has an element version to explain the version of the OCEL standard.

– A list with key attribute-names, that contains a list of the attribute names
used in the events/objects. Each attribute name is specified as a string with
key attribute-name and the attribute’s name as value.

– A list with key object-type, that contains a list of the object types associated
to the log’s objects. Each object type is specified as a string with key object-
type and the object type as value.

• The global with scope=’event’ specifies the mandatory elements of events and the
elements’ values when they are not directly provided as properties of the event.
These are specified as XML elements having the type as tag, the attribute name
as key, and the default value as value.

• The global with scope=’object’ specifies the mandatory elements of objects and
the elements’ values when they are not directly provided as properties of the object.
These are specified as XML elements having the type as tag, the attribute name
as key, and the default value as value.

Also, the log element contains different events (each one having the event tag, and being
contained inside the events element), and different objects (each one having the object
tag, and being contained inside the objects element). Each event and object contains
different properties (the type of each property is given by the tag, the name is given by
the key).

Each event contains an identifier (with key id, and having type string), an activity (with
key activity, and having type string), and a timestamp (with key timestamp, and having
type date). Moreover, each event is associated with an object map (with key omap,
and having type list) and an attribute map (with key vmap, and having type list). The
attribute map contains the attributes associated with the event.

15

OCEL Standard

Each object contains an identifier (with key id, and having type string), is associated
with an object type (with key type, and having type string), and to an attribute map
(with key ovmap, and having type map). The attribute map contains the attributes
associated with the object. As an implementation choice, the prefix ocel: has been
elided from the XML-OCEL format’s keys. Listing 1 contains only an example log. The
validation constraints are reported in Appendix 8.

Listing 1: XML-OCEL example
1 <?xml version=’1.0’ encoding=’UTF−8’?>
2 <log>
3 <global scope=”log”>
4 <string key=”version” value=”0.1”/>
5 <list key=”attribute−names”>
6 <string key=”name” value=”color”/>
7 <string key=”name” value=”costs”/>
8 <string key=”name” value=”customer”/>
9 <string key=”name” value=”prepaid−amount”/>

10 <string key=”name” value=”resource”/>
11 <string key=”name” value=”size”/>
12 <string key=”name” value=”total−weight”/>
13 <string key=”name” value=”weight”/>
14 </list>
15 <list key=”object−types”>
16 <string key=”type” value=”customer”/>
17 <string key=”type” value=”item”/>
18 <string key=”type” value=”order”/>
19 <string key=”type” value=”package”/>
20 <string key=”type” value=”product”/>
21 </list>
22 </global>
23 <global scope=”event”>
24 <string key=”id” value=” INVALID ”/>
25 <string key=”activity” value=” INVALID ”/>
26 <string key=”timestamp” value=” INVALID ”/>
27 <string key=”omap” value=” INVALID ”/>
28 </global>
29 <global scope=”object”>
30 <string key=”id” value=” INVALID ”/>
31 <string key=”type” value=” INVALID ”/>
32 </global>
33 <events>
34 <event>
35 <string key=”id” value=”e1”/>
36 <string key=”activity” value=”place order”/>
37 <date key=”timestamp” value=”2020−07−09 08:20:01.527+01:00”/>
38 <list key=”omap”>
39 <string key=”object−id” value=”i1”/>
40 <string key=”object−id” value=”o1”/>
41 <string key=”object−id” value=”i2”/>
42 </list>
43 <list key=”vmap”>
44 <string key=”resource” value=”Alessandro”/>
45 <float key=”prepaid−amount” value=”200.0”/>
46 </list>
47 </event>
48 <event>
49 <string key=”id” value=”e2”/>
50 <string key=”activity” value=”check availability”/>

16

OCEL Standard

51 <date key=”timestamp” value=”2020−07−09 08:21:01.527+01:00”/>
52 <list key=”omap”>
53 <string key=”object−id” value=”i1”/>
54 </list>
55 <list key=”vmap”>
56 <string key=”resource” value=”Anahita”/>
57 <float key=”weight” value=”10.0”/>
58 </list>
59 </event>
60 <event>
61 <string key=”id” value=”e3”/>
62 <string key=”activity” value=”load package”/>
63 <date key=”timestamp” value=”2020−07−09 08:22:01.527+01:00”/>
64 <list key=”omap”>
65 <string key=”object−id” value=”r1”/>
66 <string key=”object−id” value=”p1”/>
67 </list>
68 <list key=”vmap”>
69 <string key=”resource” value=”Gyunam”/>
70 <float key=”total−weight” value=”100.0”/>
71 </list>
72 </event>
73 </events>
74 <objects>
75 <object>
76 <string key=”id” value=”o1”/>
77 <string key=”type” value=”order”/>
78 <list key=”ovmap”>
79 <string key=”customer” value=”Apple”/>
80 <float key=”costs” value=”3500.0”/>
81 </list>
82 </object>
83 <object>
84 <string key=”id” value=”i1”/>
85 <string key=”type” value=”item”/>
86 <list key=”ovmap”/>
87 </object>
88 <object>
89 <string key=”id” value=”i2”/>
90 <string key=”type” value=”item”/>
91 <list key=”ovmap”>
92 <string key=”color” value=”green”/>
93 <string key=”size” value=”small”/>
94 </list>
95 </object>
96 <object>
97 <string key=”id” value=”p1”/>
98 <string key=”type” value=”package”/>
99 <list key=”ovmap”/>

100 </object>
101 <object>
102 <string key=”id” value=”r1”/>
103 <string key=”type” value=”product”/>
104 <list key=”ovmap”/>
105 </object>
106 </objects>
107 </log>

17

OCEL Standard

5.2 JSON Serialization of OCEL

The JSON serialization of OCEL (JSON-OCEL) follows the specification proposed in
Figure 2. An example is provided in Listing 1. The example shows the serialization of
the event log informally described in Tables 1 and 2. In this implementation, a log is an
object containing different properties.

The four mandatory elements of the log are contained as follows:

• The ocel:global-log property, that provides access to two properties:

– The log has property ocel:version to explain the version of OCEL standard.

– The ocel:attribute-names property, related to a list of attribute names of the
log’s events/objects.

– The ocel:object-types property, related to a list of object types for the log
objects.

• The ocel:global-event property, that specifies the mandatory elements of events
and the values of the elements when they are not directly provided as properties
of the event. These are specified in a dictionary.

• The ocel:global-object property, that specifies the mandatory elements of objects
and the values of the elements when they are not directly provided as properties
of the object. These are specified in a dictionary.

The events are contained in the ocel:events key. The events are expressed as a map
between the event identifier and a dictionary containing the activity (ocel:activity), the
timestamp (ocel:timestamp), the object map (ocel:omap), that contains a list of the
related objects, and the attribute map (ocel:vmap), which corresponds to each attribute
name an attribute value.

The objects are contained in the ocel:objects key. The objects are expressed as a map
between the object identifier and a dictionary containing the object type (ocel:type) and
the attribute map (ocel:ovmap), which corresponds to each attribute name an attribute
value.

Listing 2 contains only an example log. The validation constraints are reported in Ap-
pendix 8.

Listing 2: JSON-OCEL example
1 {
2 ”ocel:global−log”: {
3 ”ocel:version”: ”1.0”,
4 ”ocel:attribute−names”: [
5 ”color”,
6 ”costs”,

18

OCEL Standard

7 ”customer”,
8 ”prepaid−amount”,
9 ”resource”,

10 ”size”,
11 ”total−weight”,
12 ”weight”
13],
14 ”ocel:object−types”: [
15 ”customer”,
16 ”item”,
17 ”order”,
18 ”package”,
19 ”product”
20]
21 },
22 ”ocel:global−event”: {
23 ”ocel:activity”: ” INVALID ”
24 },
25 ”ocel:global−object”: {
26 ”ocel:type”: ” INVALID ”
27 },
28 ”ocel:events”: {
29 ”e1”: {
30 ”ocel:activity”: ”place order”,
31 ”ocel:timestamp”: ”2020−07−09 08:20:01.527+01:00”,
32 ”ocel:omap”: [
33 ”i1”,
34 ”o1”,
35 ”i2”
36],
37 ”ocel:vmap”: {
38 ”resource”: ”Alessandro”,
39 ”prepaid−amount”: 200.0
40 }
41 },
42 ”e2”: {
43 ”ocel:activity”: ”check availability”,
44 ”ocel:timestamp”: ”2020−07−09 08:21:01.527+01:00”,
45 ”ocel:omap”: [
46 ”i1”
47],
48 ”ocel:vmap”: {
49 ”resource”: ”Anahita”,
50 ”weight”: 10.0
51 }
52 },
53 ”e3”: {
54 ”ocel:activity”: ”load package”,
55 ”ocel:timestamp”: ”2020−07−09 08:22:01.527+01:00”,
56 ”ocel:omap”: [
57 ”r1”,
58 ”p1”
59],
60 ”ocel:vmap”: {
61 ”resource”: ”Gyunam”,
62 ”total−weight”: 100.0
63 }
64 }
65 },
66 ”ocel:objects”: {
67 ”o1”: {

19

OCEL Standard

68 ”ocel:type”: ”order”,
69 ”ocel:ovmap”: {
70 ”customer”: ”Apple”,
71 ”costs”: 3500.0
72 }
73 },
74 ”i1”: {
75 ”ocel:type”: ”item”,
76 ”ocel:ovmap”: {
77 ”color”: NaN,
78 ”size”: NaN
79 }
80 },
81 ”i2”: {
82 ”ocel:type”: ”item”,
83 ”ocel:ovmap”: {
84 ”color”: ”green”,
85 ”size”: ”small”
86 }
87 },
88 ”p1”: {
89 ”ocel:type”: ”package”,
90 ”ocel:ovmap”: {}
91 },
92 ”r1”: {
93 ”ocel:type”: ”product”,
94 ”ocel:ovmap”: {}
95 }
96 }
97 }

6 Available Event Logs

This section provides links to a few more realistic examples of logs in the OCEL standard
(using both the JSON and XML serializations), with more events and objects than the
original example.

Order Management log
XML serialization: http://ocel-standard.org/temp/1.0/running-example.xmlocel
JSON serialization: http://ocel-standard.org/temp/1.0/running-example.

jsonocel

Number of events: 22367 Number of objects: 11522
Description: The log represents a synthetic order management system, with many
different activities and object types (orders, items, products, and customers).

SAP ERP IDES instance - O2C log
XML serialization: http://ocel-standard.org/temp/1.0/o2c.xmlocel

JSON serialization: http://ocel-standard.org/temp/1.0/o2c.jsonocel

Number of events: 98350 Number of objects: 107767
Description: The log, extracted from an SAP IDES instance, represents an order-to-

20

OCEL Standard

cash process and contains object types (customers, orders, the delivery, and the invoice).

SAP ERP IDES instance - P2P log
XML serialization: http://ocel-standard.org/temp/1.0/p2p.xmlocel

JSON serialization: http://ocel-standard.org/temp/1.0/p2p.jsonocel

Number of events: 24854 Number of objects: 74489
Description: The log, extracted from an SAP IDES instance, represents a procure-
to-pay process and contains the orders sent to the suppliers, the events related to the
retrieval of the materials, and the invoicing.

7 Library Support

The OCEL standard and serializations are defined in a system independent manner.
Each tools supplier can implement support for handling OCEL from scratch. However,
to facilitate adoption, a reference implementation is provided in the form of a Python
library supporting the OCEL standard. The library is available at the address https:

//github.com/OCEL-standard/ocel-support (repository) and in the Pip package
ocel-standard. The library can be imported using the import ocel command, and provides
three main functionalities:

• Importing of JSON-OCEL and XML-OCEL: using the command
ocel.import log(log path), it is possible to import the given event log in a log
object that resembles the specification.

• Exporting of JSON-OCEL and XML-OCEL: using the command
ocel.export log(log object, log path), it is possible to export the log object to the
specified path.

• Validation of JSON-OCEL and XML-OCEL: using the command
ocel.validate(log path, schema path), it is possible to validate an event log against
the OCEL schema. The schemas for JSON-OCEL and XML-OCEL are available
inside the folder schemas of the repository.

The library supports an interface to query easily the lob object. The description of the
interface and of the provided commands is available at the repository of the library.

Note that, while the provided library is Python-specific, the JSON-OCEL and XML-
OCEL formats can be implemented in any programming language that supports JSON
and XML parsing.

21

OCEL Standard

8 Appedix A - Validation

This section describes the schemas of the two implementations (XML/JSON). These are
useful to verify if an XML/JSON file follows the OCEL specification.

8.1 Verification of XML-OCEL

Below is the XSD stylesheet definition for the XML-OCEL serialization. This can
be verified using an XML validator (as example, https://www.freeformatter.com/
xml-validator-xsd.html).

The following constraints are checked by the XML schema:

• The allowed types for the attributes are the ones allowed by the specification
(string, date, integer, float, boolean, and list).

• The values of simple attributes are validated against their corresponding XML
specification:

– The values associated to attributes of type string are validated against the
XML xs:string specification.

– The values associated to attributes of type date are validated against the
XML xs:date specification.

– The values associated to attributes of type integer are validated against the
XML xs:int specification.

– The values associated to attributes of type float are validated against the
XML xs:double specification.

– The values associated to attributes of type boolean are validated against the
XML xs:boolean specification.

• The validation of the nested attributes is defined in the schema. If a simple
attribute, or a list, contains nested attributes, these should be valid according to
the schema.

• The root object of the serialization can contain the following elements:

– Globals

– Events: the tag can contain many XML objects of type Event.

– Objects: the tag can contain many XML objects of type Object.

22

OCEL Standard

Listing 3: XSD stylesheet definition for XML-OCEL
1 <xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema” elementFormDefault=”qualified”>
2 <!−− This file describes the XML serialization of the OCL format for object−centric event log data. −−>
3 <!−− (c) 2020 by Chair of Process and Data Science (http://www.pads.rwth−aachen.de) −−>
4 <!−− Date: Nov. 13, 2020 −−>
5 <!−− Version 0.1 −−>
6 <!−− Author: Gyunam Park (gnpark@pads.rwth−aachen.de) −−>
7 <!−− Draft for the formal format of object−centric event log data −−>
8 <xs:element name=”log” type=”LogType”/>
9 <!−− Attributables −−>

10 <xs:complexType name=”AttributableType”>
11 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
12 <xs:element name=”string” minOccurs=”0” maxOccurs=”unbounded” type=”AttributeStringType”/>
13 <xs:element name=”date” minOccurs=”0” maxOccurs=”unbounded” type=”AttributeDateType”/>
14 <xs:element name=”int” minOccurs=”0” maxOccurs=”unbounded” type=”AttributeIntType”/>
15 <xs:element name=”float” minOccurs=”0” maxOccurs=”unbounded” type=”AttributeFloatType”/>
16 <xs:element name=”boolean” minOccurs=”0” maxOccurs=”unbounded” type=”AttributeBooleanType”/>
17 <xs:element name=”id” minOccurs=”0” maxOccurs=”unbounded” type=”AttributeIDType”/>
18 <xs:element name=”list” minOccurs=”0” maxOccurs=”unbounded” type=”AttributeListType”/>
19 <xs:element name=”container” minOccurs=”0” maxOccurs=”unbounded” type=”AttributeContainerType”/>
20 </xs:choice>
21 </xs:complexType>
22 <!−− String attribute −−>
23 <xs:complexType name=”AttributeStringType”>
24 <xs:complexContent>
25 <xs:extension base=”AttributeType”>
26 <xs:attribute name=”value” use=”required” type=”xs:string”/>
27 </xs:extension>
28 </xs:complexContent>
29 </xs:complexType>
30 <!−− Date attribute −−>
31 <xs:complexType name=”AttributeDateType”>
32 <xs:complexContent>
33 <xs:extension base=”AttributeType”>
34 <xs:attribute name=”value” use=”required” type=”xs:dateTime”/>
35 </xs:extension>
36 </xs:complexContent>
37 </xs:complexType>
38 <!−− Integer attribute −−>
39 <xs:complexType name=”AttributeIntType”>
40 <xs:complexContent>
41 <xs:extension base=”AttributeType”>
42 <xs:attribute name=”value” use=”required” type=”xs:long”/>
43 </xs:extension>
44 </xs:complexContent>
45 </xs:complexType>
46 <!−− Floating−point attribute −−>
47 <xs:complexType name=”AttributeFloatType”>
48 <xs:complexContent>
49 <xs:extension base=”AttributeType”>
50 <xs:attribute name=”value” use=”required” type=”xs:double”/>
51 </xs:extension>
52 </xs:complexContent>
53 </xs:complexType>
54 <!−− Boolean attribute −−>
55 <xs:complexType name=”AttributeBooleanType”>
56 <xs:complexContent>
57 <xs:extension base=”AttributeType”>
58 <xs:attribute name=”value” use=”required” type=”xs:boolean”/>
59 </xs:extension>
60 </xs:complexContent>

23

OCEL Standard

61 </xs:complexType>
62 <!−− ID attribute −−>
63 <xs:complexType name=”AttributeIDType”>
64 <xs:complexContent>
65 <xs:extension base=”AttributeType”>
66 <xs:attribute name=”value” use=”required” type=”xs:string”/>
67 </xs:extension>
68 </xs:complexContent>
69 </xs:complexType>
70 <!−− List attribute −−>
71 <xs:complexType name=”AttributeListType”>
72 <xs:complexContent>
73 <xs:extension base=”AttributeType”> </xs:extension>
74 </xs:complexContent>
75 </xs:complexType>
76 <!−− Container attribute −−>
77 <xs:complexType name=”AttributeContainerType”>
78 <xs:complexContent>
79 <xs:extension base=”AttributableType”> </xs:extension>
80 </xs:complexContent>
81 </xs:complexType>
82 <!−− Globals definition −−>
83 <xs:complexType name=”GlobalsType”>
84 <xs:complexContent>
85 <xs:extension base=”AttributableType”>
86 <xs:attribute name=”scope” type=”xs:NCName” use=”required”/>
87 </xs:extension>
88 </xs:complexContent>
89 </xs:complexType>
90 <!−− Attribute −−>
91 <xs:complexType name=”AttributeType”>
92 <xs:complexContent>
93 <xs:extension base=”AttributableType”>
94 <xs:attribute name=”key” use=”required” type=”xs:Name”/>
95 </xs:extension>
96 </xs:complexContent>
97 </xs:complexType>
98 <!−− Elements may contain attributes −−>
99 <xs:complexType name=”ElementType”>

100 <xs:complexContent>
101 <xs:extension base=”AttributableType”/>
102 </xs:complexContent>
103 </xs:complexType>
104 <!−− Logs are elements that may contain executions −−>
105 <xs:complexType name=”LogType”>
106 <xs:complexContent>
107 <xs:extension base=”ElementType”>
108 <xs:sequence>
109 <xs:element name=”global” minOccurs=”0” maxOccurs=”4” type=”GlobalsType”/>
110 <xs:element name=”events” minOccurs=”0” maxOccurs=”unbounded” type=”EventsType”/>
111 <xs:element name=”objects” minOccurs=”0” maxOccurs=”unbounded” type=”ObjectsType”/>
112 </xs:sequence>
113 </xs:extension>
114 </xs:complexContent>
115 </xs:complexType>
116 <!−− Executions are elements that may contain events −−>
117 <xs:complexType name=”EventsType”>
118 <xs:complexContent>
119 <xs:extension base=”ElementType”>
120 <xs:sequence>
121 <xs:element name=”event” minOccurs=”0” maxOccurs=”unbounded” type=”EventType”/>

24

OCEL Standard

122 </xs:sequence>
123 </xs:extension>
124 </xs:complexContent>
125 </xs:complexType>
126 <!−− Events are elements −−>
127 <xs:complexType name=”EventType”>
128 <xs:complexContent>
129 <xs:extension base=”ElementType”>
130 </xs:extension>
131 </xs:complexContent>
132 </xs:complexType>
133 <!−− Specifications are elements that may contain data −−>
134 <xs:complexType name=”ObjectsType”>
135 <xs:complexContent>
136 <xs:extension base=”ElementType”>
137 <xs:sequence>
138 <xs:element name=”object” minOccurs=”0” maxOccurs=”unbounded” type=”ObjectType”/>
139 </xs:sequence>
140 </xs:extension>
141 </xs:complexContent>
142 </xs:complexType>
143 <!−− Objects are elements −−>
144 <xs:complexType name=”ObjectType”>
145 <xs:complexContent>
146 <xs:extension base=”ElementType”>
147 </xs:extension>
148 </xs:complexContent>
149 </xs:complexType>
150 </xs:schema>

8.2 Verification of JSON-OCEL

Below is the JSON schema for the JSON-OCEL serialization. This can be verified using
a JSON validator (as example, https://www.jsonschemavalidator.net/).

The following constraints are checked by the JSON schema:

• The JSON serialization should contain a dictionary of events (inside the ocel:events
key) and a dictionary of objects (inside the ocel:objects key).

• Each event should have:

– An identifier (ocel:id) of type string.

– An activity (ocel:activity) of type string.

– A timestamp (ocel:timestamp) of type date.

– An attribute map (ocel:vmap), that can be possibly empty.

• Each object should have:

– An identifier (ocel:id) of type string.

– An object type (ocel:type) of type string.

25

OCEL Standard

– An attribute map (ocel:ovmap), that can be possibly empty.

Listing 4: JSON schema for JSON-OCEL
1 {
2 ”$schema”: ”http://json−schema.org/schema#”,
3 ”additionalProperties”: true,
4 ”definitions”: {
5 ”AttributeBooleanType”: {
6 ”type”: ”boolean”
7 },
8 ”AttributeDateType”: {
9 ”type”: ”string”,

10 ”format”: ”date−time”
11 },
12 ”AttributeFloatType”: {
13 ”type”: ”number”
14 },
15 ”AttributeIntType”: {
16 ”type”: ”integer”
17 },
18 ”AttributeStringType”: {
19 ”type”: ”string”
20 },
21 ”ObjectType”: {
22 ”type”: ”string”
23 },
24 ”ObjectMappingType”: {
25 ”type”: ”object”
26 },
27 ”ValueMappingType”: {
28 ”type”: ”object”
29 },
30 ”EventType”: {
31 ”properties”: {
32 ”ocel:id”: {”$ref”: ”#/definitions/AttributeStringType” },
33 ”ocel:activity”: {”$ref”: ”#/definitions/AttributeStringType” },
34 ”ocel:timestamp”: {”$ref”: ”#/definitions/AttributeDateType” },
35 ”ocel:vmap”: {
36 ”items”: {
37 ”$ref”: ”#/definitions/ValueMappingType”
38 },
39 ”type”: ”object”
40 },
41 ”ocel:omap”: {”type”: ”array” }
42 },
43 ”required”: [
44 ”ocel:id”, ”ocel:activity”, ”ocel:timestamp”, ”ocel:omap”, ”ocel:vmap”
45],
46 ”type”: ”object”
47 },
48 ”ObjectType”: {
49 ”properties”: {
50 ”ocel:id”: {”$ref”: ”#/definitions/AttributeStringType” },
51 ”ocel:type”: {”$ref”: ”#/definitions/AttributeStringType” },
52 ”ocel:ovmap”: {
53 ”items”: {
54 ”$ref”: ”#/definitions/ValueMappingType”
55 },
56 ”type”: ”object”
57 }
58 },

26

OCEL Standard

59 ”required”: [
60 ”ocel:id”, ”ocel:type”, ”ocel:ovmap”
61],
62 ”type”: ”object”
63 }
64 },
65 ”description”: ”Schema for the JSON−OCEL implementation”,
66 ”properties”: {
67 ”ocel:events”: {
68 ”items”: {
69 ”$ref”: ”#/definitions/EventType”
70 },
71 ”type”: ”object”
72 },
73 ”ocel:objects”: {
74 ”items”: {
75 ”$ref”: ”#/definitions/ObjectMappingType”
76 },
77 ”type”: ”object”
78 }
79 },
80 ”type”: ”object”
81 }

27

